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Abstract Cardio-renal syndromes (CRS) are defined as
disorders of the heart and kidney whereby acute or chronic
dysfunction in one organ may induce acute or chronic
dysfunction of the other. CRS have been classified into five
categories, where types 2 and 4 represent respectively
chronic cardio-renal and chronic reno-cardiac syndromes.
In these conditions, the chronic disorder of either the heart
or kidney has been shown to induce some degree of
cachexia. At the same time, cachexia has been proposed as
a possible mechanism contributing to the worsening of such
pathological organ cross talk. Common pathogenetic
mechanisms underlie body wasting in cachectic states of
different chronic heart and kidney diseases. In these
circumstances, a vicious circle could arise, in which
cachexia associated with either heart failure or chronic
kidney disease may contribute to further damage of the
other organ. In chronic CRS, activation of the immune and
neuroendocrine systems contributes to the genesis of
cachexia, which in turn can negatively affect the heart and
kidney function. In patients with cardiac sustained activa-
tion of the immune and neuroendocrine systems and

oxidative stress, renal vascular resistance can increase and
therefore impair renal perfusion, leading to worsening
kidney function. Similarly, in renal cachexia, increased
levels of pro-inflammatory cytokines can cause progressive
left ventricular systolic dysfunction, myocardial cell death,
endothelial dysfunction and increased myocardial fibrosis,
with consequent impairment of the chronic reno-cardiac
syndrome type 4. Thus, we speculate that the occurrence of
different types of chronic CRS could represent a funda-
mental step in the genesis of cachexia, being renal and
cardiac dysfunction closely related to the occurrence of
systemic disorders leading to a final common pathway.
Therefore, the heart and kidney and cachexia represent a
triad causing a vicious circle that increases mortality and
morbidity: In such circumstances, we may plausibly talk
about cardio-renal cachexia syndrome. Complex interrela-
tions may explain the transition from CRS to cachexia and
from cachexia to CRS. Identification of the exact mecha-
nisms occurring in these conditions could potentially help
in preventing and treating this deadly combination.
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1 Introduction

Heart failure (HF) is a clinical condition associated with
poor prognosis and high hospitalisation rates due to
exacerbation of the disease [1, 2]. Concomitant kidney
abnormalities are frequent: Only 7% of chronic HF patients
have a preserved kidney function, with the majority of
patients having mild to moderate impairment of glomerular
filtration rate [3]. Furthermore, acute HF syndromes are
frequently complicated by acute kidney injury (AKI) [4]. In
both chronic and acute settings of HF, many studies have
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shown that worsening renal function is associated with
dismal prognosis [4–6]. These conditions are generally
grouped under the umbrella term cardio-renal syndromes
(CRS).

Cachexia is a frequent and serious complication of
chronic diseases, including HF, chronic kidney disease
(CKD), cancer and acquired immunodeficiency syn-
drome [7, 8]. It has been calculated that in 2006,
approximately 5 million people in the USAwere cachectic
because of cancer or other chronic diseases [9]. Uremic
cachexia increases the risk of death of patients with CKD
up to 100- to 200-fold that of the general population [10];
similarly, cardiac cachexia is a negative prognostic factor
in patients with CHF independently of left ventricular
systolic function and exercise capacity: cachectic patients
have a poor outcome [11, 12], with survival rates at
18 months <50%.

Interestingly, cardio-renal syndromes and cachexia share
common pathophysiological mechanisms, and we hypothe-
sise that the presence of one of these conditions may favour
the occurrence or worsening of the other. A better
understanding of the complex interplay between the heart
and kidney could help improve the management of these
patients. The same may be true for cachexia. In the present
article, we will focus on the relationship between cachexia
and cardio-renal syndromes, exploring the potential mech-
anisms contributing to the vicious circle leading to a
combined cardio-renal cachexia syndrome (CRCS) and its
progressive worsening.

2 Cardio-renal syndromes

CRS, defined as ‘disorders of the heart and kidney whereby
acute or chronic dysfunction in one organ may induce acute
or chronic dysfunction of the other’ [13], have been
recently classified into five categories [14].

CRS type 1, or acute CRS, is determined by any of the
acute HF syndromes [2] causing AKI. This type of CRS is
frequent, with acute HF syndromes being the most common
and the most expensive diagnosis-related group for Medi-
care patients [15] and worsening renal function occurring in
30–45% of patients during hospitalisation [16, 17]. The
mechanisms contributing to worsening renal function after
an episode of acute HF are multiple and complex. Whilst
some haemodynamic factors, like heart rate, systolic arterial
blood pressure and pulmonary wedge pressure, do not seem
to play a major role, an incremental risk of developing AKI
has been described with increased central venous pressure
[18]. Other factors may contribute to worsening renal
function in acute HF, like drug and contrast media use, or
systemic activation of neurohormonal systems and pro-
inflammatory cytokines [19–21].

CRS type 2, or chronic CRS, is defined as progressive
CKD caused by chronic cardiac dysfunction. The preva-
lence of this subtype is approximately 25% [22], and the
associated risk of cardiovascular mortality and hospital-
isation for worsening HF for chronic HF patients is more
than three times higher when the glomerular filtration rate
(GFR) falls below 45 ml min−1/1.73 m2 as compared with a
normal GFR. The pathophysiological basis for the inter-
actions between heart and kidney in CRS type 2 has not
been fully understood yet. It is likely that a chronic
hypoperfusion of the kidney may progressively lead to
alterations in renal vasculature; increased renal vascular
resistance, continuous activation of hormonal systems and
drug-induced damage all contribute to further impairment
of renal function moving from an initial insult to a
progressive fibrosis and sclerosis of the renal parenchyma.

CRS type 3, or acute reno-cardiac syndrome, is charac-
terised by an AKI which leads to acute HF, ischaemia or
arrhythmias. AKI can affect the heart through multiple
mechanisms. First, volume overload can lead to pulmonary
congestion, particularly in the presence of left ventricular
dysfunction; second, acidosis and uraemia itself can depress
cardiac systolic function [23, 24], and acidosis and hyper-
kalemia carry a pro-arrhythmic risk. Another important
factor is the activation of inflammation at the cardiac level,
which can be triggered by renal ischaemia [19, 25, 26].

CRS type 4, or chronic reno-cardiac syndrome, is defined
as a condition in which primary CKD contributes to cardiac
abnormalities of various types and degrees, like hypertro-
phy, diastolic and systolic dysfunction, and increased risk of
cardiovascular morbidity and mortality [27, 28]. Many
pathways are implicated as pathogenetic mechanisms of
cardiac damage in chronic renal disease: Activation of the
renin–angiotensin–aldosterone system, volume overload,
endothelial dysfunction, inflammation and anaemia all can
contribute to functional and structural changes in the heart
and vessels [29]. Less than 20% of patients with end-stage
renal disease have a normal heart at echocardiography,
whilst the majority have left ventricular hypertrophy or
dilation [30]. A baseline GFR <60 ml min−1/1.73 m2 is
independently associated with increased incidence of
peripheral artery disease [31] and CHF [32], and almost
half of the mortality affecting patients with CKD is due to
cardiovascular events [33, 34].

CRS type 5, or secondary CRS, occurs when an acute or
chronic systemic disorder causes both renal and cardiac
dysfunction. Examples of this type of CRS include sepsis,
haemorrhagic shock, diabetes, sarcoidosis and amyloidosis.
The model of sepsis is paradigmatic in this context: Up to
60% of patients with systemic infection develop AKI,
which contributes to higher morbidity and mortality [35,
36]; at the same time, cardiac damage is common. Septic
patients have increased markers of cardiac-specific damage
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[37], and activation of the inflammatory response is directly
responsible for cardiac cell apoptosis [38] and depressed
left ventricular systolic function [39]. These abnormalities
can trigger a vicious circle in which impairment of one
organ can negatively affect the function of the other.

3 Cachexia in chronic diseases: definition
and epidemiology

Cachexia is a complex syndrome associated with poor
outcome, independently of the underlying primary disease.
It is characterised by loss of skeletal muscle with or without
loss of fat mass. Several definitions have been proposed,
most of them focusing on the dominant feature of weight
loss alone, and only a minority of authors recognised the
importance of body composition changes over time. Other
causes of weight loss include anorexia, sarcopenia and
malnutrition, all of them possibly occurring both in HF and
in CKD. Differentiation from other syndromes of weight
loss is important to the early recognition and possible
management of the syndrome. Carr et al. [40] defined
cachexia as a body fat content of <15% in men and <22%
in women, or a percentage of ideal weight <90%, whilst
later cachexia was defined as a loss of >10% of lean tissue
[41]. Nevertheless, these definitions depend on an evalua-
tion of body composition, which is frequently not applica-
ble in clinical practice. A previous definition, derived from
the SOLVD database, appears to be the most appropriate to
use in clinical practice since it does not require biochemical
or skeletal muscle performance tests. Cachexia should
therefore be defined as ‘a non-oedematous weight loss of
>6% of total body weight over a period of 6 or more
months’ [12].

More recently, a new definition has been proposed,
which takes into account the concomitant clinical features
associated with weight loss; according to the definition
proposed by Evans et al. [42], cachexia is ‘a weight loss of
5% in twelve months or less (or a body mass index <20 kg/
m2) in a patient with underlying chronic disease and at least
three of the following criteria: decreased muscle strength,
fatigue, anorexia, low fat-free mass index and abnormal
biochemistry (inflammation, anaemia, low serum albumin)’
(Table 1).

Cachexia is frequently observed in association with
many chronic disorders. Up to 60% of patients with end-
stage renal disease (ESRD) present with malnutrition [43,
44], where this term does not only imply reduced energy
intake, like in simple starvation, but also complex meta-
bolic changes. This entity has been identified as malnutri-
tion–inflammation–atherosclerosis (MIA) syndrome with
potential genetic implications in its pathogenesis [45]. The
prevalence of cardiac cachexia, in one of our initial studies,

was 16% [11]; subsequent observations [12] reported an
incidence of cardiac cachexia of 35%. Interestingly, in
recent years, an inverse association with all-cause mortality
and BMI in patients on haemodialysis has been reported
[46], and preliminary studies suggest that this ‘reverse
epidemiology’ is also present in CKD patients who are not
on dialysis [47], particularly in proteinuric CKD [48].
Paradoxically, patients with higher BMI have lower all-
cause and cardiovascular mortality. The occurrence of
cachexia has therefore important prognostic implications
in CKD, similarly to other chronic diseases; the under-
standing of the mechanisms that lead to cachexia might
therefore help in improving the outcome of CKD patients.

4 Pathophysiological mechanisms of cachexia syndrome

4.1 Chronic HF

In 1984, Braunwald [49] suggested that in cardiac cachexia,
right ventricular failure could be predominant; interestingly,
the only predictor of malnutrition in patients with severe
CHF was an increased right atrial pressure [40]. In another
study, cardiac output and systolic and diastolic arterial
pressures were found to be significantly lower in cachectic
patients as compared with non-cachectic patients [50].
These findings suggest that haemodynamic conditions
may play a role in the genesis of cardiac cachexia.
Nevertheless, the most important players are neurohormon-
al and immune mechanisms. The trigger for immune
activation has been reported to be pressure overload [51]
and splanchnic venous congestion with consequent bacte-
rial translocation from the gut into the bloodstream [52].
Levine et al. [53] were the first to demonstrate increased
levels of tumour necrosis factor-alpha in cachectic patients.
Other studies confirmed a marked immune activation in
patients with cardiac cachexia [54] and the expression of
cytokines in the myocardium of CHF patients [55]. Pro-

Table 1 Diagnostic criteria for cachexia (adapted from Evans et al.)

Chronic disease

+

Weight loss of ≥5% in 12 months or less (or BMI <20 kg/m2)

+

≥3 of the following:

–Decreased muscle strength

–Fatigue

–Anorexia

–Low fat-free mass index

–Abnormal biochemistry (↑CRP or IL-6; Hb <12 g/dL; s-albumin
<3.2 g/L)
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inflammatory cytokines are the major determinants of
catabolism, and we have previously shown that circulating
tumour necrosis factor-alpha, originally called ‘cachectin’,
is the strongest predictor of the degree of previous weight
loss in cachectic patients [56] and correlates with a poor
prognosis [57]. Immune activation in HF patients can cause
worsening cardiac function [58] through the induction of
apoptosis [59] and nitric oxide downregulation [60],
impaired exercise capacity [61] and skeletal muscle
abnormalities [61, 62]. Cytokines also reduce constitutive
nitric oxide synthase mRNA in endothelial cells [63] and
therefore impair endothelial function. In fact, an inverse
relationship between peripheral blood flow and TNF levels
has been reported in chronic HF patients [64].

The third key mechanism in the development of cardiac
cachexia is neurohormonal activation. Increased tone of the
adrenergic and renin–angiotensin–aldosterone systems aim
to maintain cardiac output, but at the expense of increased
vascular resistance and afterload, with further left ventric-
ular remodelling and dysfunction. Interestingly, the same
hormonal systems play an important role in peripheral
tissue wasting: Angiotensin II and catecholamines have
pro-apoptotic effects and increase resting metabolic rate
[65, 66]. Similarly, abnormalities in the growth hormone
axis and cortisol systems have been reported in chronic HF
patients [67, 68]. Taken together, these abnormalities lead to
an imbalance between the catabolic and anabolic states,
confirmed by the observation of significantly higher levels
of catabolic hormones in cachectic as compared with non-
cachectic patients [53], with consequent muscle wasting, a
dominant feature of cachectic patients [69]. In fact, muscle
weakness and early fatigue are two of the main symptoms
of HF patients [70, 71] and occur most commonly in
patients with advanced HF or cachexia [72].

Finally, regulation of feeding and energy balance may be
altered in chronic HF patients, in particular in patients with
cardiac cachexia. Ghrelin, mainly produced by the stomach
fundus, induces the release of growth hormone and
regulates appetite [73, 74]. It has been reported to be
increased in cachectic patients [75], and the increase in
ghrelin was correlated with the increase in circulating
growth hormone; it may therefore have a role in attenuating
the catabolic–anabolic imbalance via growth hormone-
releasing effects. Insulin and growth hormone resistance
may occur secondary to HF [76, 77], with consequent loss
of their anabolic effects.

4.2 Chronic kidney disease

CKD and ESRD are frequently complicated by progressive
deterioration of nutritional status [8], which significantly
affects prognosis and quality of life. Cachexia in CKD,
similarly to HF, is a complex syndrome which derives not

only by a reduced energy intake but is also the consequence
of multiple pathogenetic mechanisms, including increased
protein catabolism, reduced anabolism, increased energy
expenditure and loss of adipose tissue. A variety of terms
have been used to define this syndrome in CKD, like
protein-energy wasting [78], malnutrition–inflammation
complex syndrome [79] and kidney disease wasting [80],
underlying the role of different pathways. As mentioned
above, the accelerated cardio-renal syndrome type 4 in
malnourished patients has also been defined as MIA
syndrome based on the relation among malnutrition, inflam-
mation and accelerated atherosclerosis. A major determinant
of the disease process in CKD is anorexia. Amongst patients
on renal replacement therapy, impaired appetite is
reported in 38% and is associated with worse morbidity
and mortality [81, 82]. Interestingly, anorexia was asso-
ciated with increased inflammatory markers, suggesting a
possible role for immune activation in regulating the
stimuli for food intake. Furthermore, similarly to HF, it has
been repeatedly reported that inflammation is closely
related to qualitative and quantitative changes in the
skeletal muscles of patients with CKD [83, 84]. Activation
of the protease caspase-3 is the initial step of muscle
protein degradation, and this inflammation-mediated pro-
teolytic pathway is not counterbalanced by increased
anabolic pathways in CKD [83]. Growth hormone (GH)
resistance, due to the reduced density of GH receptors and
abnormal intracellular signalling, contributes to increased
skeletal muscle protein catabolism [80] and failure of
anabolism in patients with end-stage renal disease.

Increased protein breakdown in CKD is also associated
with insulin resistance [85], which frequently occurs in end-
stage renal disease [86] and is triggered by inflammation
through an increase in oxidative stress [87]. Therefore,
inflammation can contribute to the disease process directly,
activating proteolysis, and indirectly, through insulin resis-
tance and oxidative stress. IN CKD, an increase in C-
reactive protein is common as it is a decrease of acute phase
proteins such as albumin. The mechanism that leads to
inflammation in ESRD is complex and not fully understood
yet, but recent studies paid attention on the gut as a possible
source of cytokine stimulus [88]. In states of intestinal
under perfusion, as during haemodialysis [89], the perme-
ability of the intestinal wall is increased as a result of
hypoxia and local production of lipopolysaccharide (LPS)
[90], allowing LPS leakage into the bloodstream, with
consequent immune activation [91]. These complex inter-
actions between gut and kidney, for which the term
‘intestinal–renal syndrome’ has been proposed [91], could
explain the occurrence of cardiovascular abnormalities
during dialysis, like arrhythmias, silent ischaemia [92] and
myocardial stunning [93], through the production of pro-
inflammatory cytokines with consequent cardiac and
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vascular dysfunction [60, 94]. Further mechanisms have
been indicated as potential causes of accelerated muscle
wasting and intestinal abnormalities such as the lack of
vitamin D receptor activation [95] and the lack of the anti-
apoptotic effect at tissue levels of erythropoietin [96]; both
conditions are typical of CKD and tend to worsen with
progression of renal dysfunction.

Finally, abnormalities in ghrelin system have been
reported in patients with CKD. Plasma ghrelin levels
increase in dialysis patients [97] because of reduced ghrelin
degradation—which occurs mainly in the kidney [98]. Two
major forms of circulating ghrelin are acylated and des-acyl
ghrelin. Acylated ghrelin stimulates food intake [99],
downregulates pro-inflammatory cytokines [100] and
improves lean body mass [101], whilst the des-acyl form
induces a negative energy balance and could be involved in
anorexia in CKD patients [98]. The different effects of the
two forms can explain the conflicting results of previous
studies on the exact role of this peptide on energy
metabolism and regulation of food intake.

5 The cardio-renal cachexia syndrome:
a cachexia-mediated negative heart–kidney cross talk

Chronic HF and CKD can be both complicated by the
occurrence of cachexia, and interestingly, the underlying
pathophysiological mechanisms are similar in the two

conditions, as reviewed in the present article. Thus, since
chronic heart and kidney interactions are at the base of CRS
types 2 and 4, we could propose a new entity called cardio-
renal cachexia syndrome (CRCS). It had been previously
suggested that common pathogenetic mechanisms underlie
body wasting in cachectic states of different chronic heart
and kidney diseases [102]. Now we hypothesise that a
vicious circle could arise, in which cachexia associated with
either HF or CKD may contribute to further damage of the
other organ (Fig. 1). Activation of the immune and
neuroendocrine systems contribute to the genesis of
cachexia, which in turn can negatively affect the heart and
kidney function, worsening CRS types 2 and 4. In patients
with cardiac cachexia, the same endogenous factors can
affect different target organs other than the heart, particu-
larly the kidney. Sustained activation of the immune and
neuroendocrine systems and oxidative stress can increase
renal vascular resistance and therefore impair renal perfu-
sion, leading to worsening kidney function, i.e. a CRS type
2, or chronic cardio-renal syndrome. Similarly, in renal
cachexia, increased levels of pro-inflammatory cytokines
can cause progressive left ventricular systolic dysfunction,
myocardial cell death, endothelial dysfunction and increased
myocardial fibrosis [103], with consequent impairment of the
haemodynamic conditions corresponding to the chronic
reno-cardiac syndrome, or CRS type 4.

Furthermore, we speculate that the occurrence of
different types of CRS could also represent a fundamental
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Chronic hypoperfusion
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Chronic inflammation
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Endothelial Dysfunction
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Fig. 1 Cardio-renal cachexia syndromes
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step in the genesis of cachexia, being renal and cardiac
dysfunction closely related to the occurrence of systemic
congestion, a central player in the theory of LPS translo-
cation and immune activation, and to neurohormonal
activation, with consequent catabolic/anabolic imbalance,
as previously discussed.

In conclusion, the heart and kidney are players of the same
game at different levels, and when cachexia is involved, we
may plausibly talk about CRCS. Complex interrelations may
explain the transition from CRS to cachexia and from
cachexia to CRS. Identification of the exact mechanisms
occurring in these conditions could potentially help in
preventing and treating this deadly combination.
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